The Technical Research Institute

The Technical Research Institute undertakes R&D to support
our three businesses: Civil Engineering,
Ground Improvement and Blocks & Environment.

Our laboratory was established in 1969. In Japan, around that time, concrete blocks began to be used. The initial focus of our research was to ensure effective use of Tetrapod on site. Over the years, many positive results relating to the concrete blocks and the formations they create along coasts and around harbors have been reported, indicating that they have greatly benefited society.

In 2018 the Technical Research Institute made a fresh start in a wider role: R&D related to all three of our core businesses, civil engineering, ground improvement and blocks & environment. Fudo Tetra has helped in many ways to build Japan’s social infrastructure, and has a portfolio of civil engineering technologies on land—for highways, railways and energy facilities among others—and offshore—for ports and airports and man-made islands.
Our success in 1956 in developing the world’s first sand compaction method was followed by continuing research and development, and out of this expertise in ground improvement we have compiled a wealth of design and construction technologies as well as a strong record of actual site applications.
The Technical Research Institute will continue to expand the breadth and depth of our technologies and skills, and from our own technical innovations we trust we can make more contributions in the future in fulfilling society’s and our customers’ requirements.

Brochure (3MB)

Research Groups

Fudo Tetra’s R&D activities are centered on our company businesses, for which we have our own technologies and knowhow. In civil engineering this means land and sea civil engineering construction and environmental restoration technologies, in ground improvement we focus on ground improvement technologies related to sand piles and solidification processes, and in the blocks & environment business, in wave-dissipating and armor blocks for coastal and harbor formations.

Maritime and Coastal Hydraulics Group

Research Groups

This Group undertakes research into the hydraulic stability and hydraulic performance of wave-dissipating concrete blocks exposed to wave action and currents in the ocean and in rivers. We make full use of our four wave flumes to better understand hydraulic phenomena, and use numerical analysis to investigate their mechanisms for practical and meaningful research. In coastal developments, the local environment and its ecology must be taken into account. For concrete block development we use forms that are environment-friendly, and after installation, we monitor over the long term to check their environmental symbiotic effect: whether seaweeds and corals have become established, for example. We are also researching measures to rectify the loss in recent years of seaweed beds in all parts of Japan related to the rise in seawater temperature.

  • Hydraulic model experiment of wave-dissipating concrete block stability

  • Numerical analysis (velocity field around breakwater)

  • Seaweed established on Permex

  • Coral growing on Tetrapod

Environmental Restoration Group

Research Groups

In this Group, we are developing new technologies related to environmental restoration projects.
In recent years we have concentrated efforts on soil decontamination work, largely working on the development of chemical agents and decontamination methods. We have use of the Materials Chemistry Laboratory for indoor tests on the development of new chemical agents, analytical tests, recording results and so on, and for decontamination testing using large scale implementation equipment we use No. 3 Laboratory Building.

  • Diagrammatic soil decontamination

  • Advection diffusion analysis

Ground Improvement Group

Research Groups

The Ground Improvement Group undertakes R&D for new technologies related to ground improvement projects.
Fudo Tetra has more than 50 different types of ground improvement methods, and deals with the challenges of every type of ground. For development of new technologies, indoor tests on ground materials are carried out in the Materials Chemistry Laboratory. The Laboratory Building is used for small-scale soil tests and to check the action of implementation equipment, and we also use the Multi-purpose Outdoor Test Space for full-scale tests replicating site conditions using actual installation rigs.

Structural Mechanics Group

Research Groups

This Group studies the structural strength of environmental blocks. Wave-dissipating blocks need to have sufficient strength to preclude damage from wave action, but the structural performance of these blocks is still not entirely clear. For greater understanding we use full-sized blocks in static loading tests and dropping tests, as well as structural analysis.

  • Tetrapod dropping test

  • Static loading test on Tetrapod

To implement in wave-dissipating work the policy initiative of the Ministry of Land, Infrastructure, Transport and Tourism to make full use of ICT, we are collaborating with the technology department for our civil engineering business to study greater use of CIM, and the use of ICT in maintenance management for wave-dissipating projects.

Fundamental Technologies Group

Research Groups

This Group is studying general-purpose technologies to be used over the medium to long term.
Our work covers research into the effective use of marine resources, measures to prevent the loss of sand beaches brought about by sea level rise due to global warming or by stronger wave action, and technical developments leading to higher productivity or labor saving to combat the fall in Japan’s working-age population due to the low birth rate and aging society.

Intellectual Property Group

Research Groups

We undertake the administrative work related to industrial property rights such as patents, design rights, and trademarks.
While the positive outcomes of research and development into civil engineering, groundwork and environmental blocks must be properly protected, we aim to open up further business opportunities through their effective use.

Main Facilities

When it opened in 1969 this Research Institute possessed 1 wave basin and 1 wave flume for our initial research. The scope of our research has subsequently been considerably diversified, and we have increased the number of wave flumes. At an early stage we installed irregular wave-making and multidirectional irregular wave-making technology to meet more sophisticated and more exacting methods of block formation design. Currently we use 4 wave flumes set up in our No. 1 and No. 2 Buildings for research in fields of maritime and coastal structures.
In 2017 we created a multipurpose outdoor test space for ground improvement research. This has enabled us to create test grounds, changing the soil to match the required conditions for tests to check the improvement effect of new methods. Development is speeded up with more reliable validation of improvement effect through testing under set ground conditions and with fewer limitations on test procedures.
In 2018 a third laboratory building and a materials chemistry laboratory were opened for research into technologies for land-based and offshore civil engineering, environmental restoration and ground improvement, and they are now in use for various types of indoor testing.

No. 1 Laboratory Building / Hydraulic Testing Facility

This facility contains 4 wave flumes each equipped with an irregular wave-generating device. In all 4 flumes we have also installed the latest reflected wave absorbing type of wave-generating control system, which was developed at the University of Aalborg in Denmark, to enable high precision experiments of irregular wave action.

1st large wave flume:
Dimensions: 55m long x 1.2m width x 1.5m deep
Wave-generating device piston type (AC servo motor drive)
Wave type regular waves, irregular waves
Wave-generating capacity regular waves max. wave height H=50 cm
2nd large wave flume:
Dimensions: 50m long x 1.0m wide x 1.5m deep
Wave generating device piston type (AC servo motor drive)
Wave type regular waves, irregular waves
Wave-generating capacity regular waves max. wave height H=50 cm
max. significant wave height H1/3=30cm

*Equipped with tsunami generating devices (pump-type, chamber type)

No. 2 Laboratory Building

This building is equipped with 2 wave flumes and structural testing facilities. The wave flumes have the latest reflected wave absorbing type of wave-generating control system installed, to enable high precision experiments of irregular wave action. In the structural test facility, tests are carried out using actual size large blocks.

Mid-size flume:
Dimensions: 50m long x 1.0m wide x 1.3m deep
Wave generating device piston type (AC servo motor drive)
Wave type regular waves, irregular waves
Wave-generating capacity egular waves max. wave height H=40 cm
max. significant wave height H1/3=25cm
Small wave flume:
Dimensions: 29m long x 0.5m wide x 1.0m deep
Wave generating device piston type (hydraulic drive)
Wave type regular waves, irregular waves
Wave-generating capacity regular waves max. wave height H=30 cm
max. significant wave height H1/3=15cm
Structural test facility

Fitted with a loading test device, 1,000kN compression test device, and crane.

No. 3 Laboratory Building

This building is used for all sort of tests and checks of performance that require an extensive interior space.

Exterior view / Interior view
Ground Improvement Group:

Tests using small experimental soil tanks, and performance checks for single elements of machinery.

Environmental Restoration Group:

Effectiveness of decontamination methods shown in the lab may drop as their application is scaled up, therefore large-scale tests are conducted to check that the effect does not change when using implementation equipment.

Materials Chemistry Laboratory

This laboratory is used for testing chemical agents and materials used in various civil engineering methods, property tests after field experiments, and analysis of samples collected from sites. It is equipped with the necessary instruments and storage for reagents.

Exterior view
Ground Improvement Group:

Blending tests for fluidized sand used in the SAVE-SP method, blending tests for soil mixed with hardening agent and other basic tests.

  • Groundwork Group Testing Equipment

Environmental Restoration Group:

Indoor tests to develop decontaminating agents and methods, and analysis of contaminated soil samples collected from sites. The necessary reagents, and equipment required for chemical analysis and many other types of testing are available.

Multi-purpose Outdoor Test Space

In the development process for new ground improvement methods, full-scale site testing is essential to check the method’s improvement effect and implementation performance. However, it is not easy to find test sites at the required time and location with the appropriate ground conditions.
We have therefore created a multi-purpose test space at the Technical Research Institute and are able to create test grounds by switching the soil to match the test requirements. Thus, it becomes possible to see the effectiveness reliably with no restrictions on the testing procedure, and the development process can be speeded up.

  • View of testing

  • Digging out test piles for inspection

Horikawa Library

The Horikawa Library was established in April 1995 within this institute to house and preserve the collection of Dr. Kiyoshi Horikawa, Doctor of Engineering. It contains some 14,000 volumes of important books and documents from Japan and overseas that Dr. Horikawa collected throughout his professional life in the course of his wide-ranging research. Since its opening, as well as Fudo Tetra staff the library has been used by large numbers of researchers.
For further details please contact the Technical Research Institute.

Kiyoshi Horikawa

Present positions: Member, The Japan Academy; Professor Emeritus, University of Tokyo; Professor Emeritus, Saitama University; Professor Emeritus, Musashi Institute of Technology
Dr Kiyoshi Horikawa is a leading research engineer in coastal engineering working not just in Japan but worldwide, and has headed research in this field over many years. He has also made major contributions in education, at the Council for University Chartering and Incorporated Educational Institutions.

Published papers

論文題 著者名 学会・刊行物名
港湾施設における小型施工機を用いた液状化対策工法とその事例竹内秀克,尾形 太土木施工 2022年4月号 pp.76-79
Study on SPT N-values and Relative Density矢部浩史,原田健二,伊藤竹史,渡辺英二5th International Symposium on Cone Penetration Testing (CPT’22) pp.772-777
各種地盤における実地震・加振による サウンディング値の変化原田健二液状化に係わる被害のメカニズムと名称を考える委員会(地盤工学会関東支部) 2022-10-3
固化処理土で構築された岸壁の地震時挙動と安定性評価手法の検討竹内秀克,高橋英紀(港湾空港技術研究所),府川裕史・浅田 英幸(東亜建設工業),NGUYEN Binh(五洋建設)土木学会論文集B3(海洋開発) 2022 年78巻2号 p. I_589-I_594
Shaking table tests on level ground model simulating construction of sand compaction piles矢部浩史,古関純一(東大),原田健二, 田中肇一PBD-Ⅳ:Performance-based design in Earthquake Geotechnical Engineering pp 1231–1239
Influence of Lateral Stress Ratio on N-value and Cyclic Strength of Sands Containing Fines原田健二,石原研而(中央大),矢部浩史International Conference on Performance-based Design in Earthquake Geotechnical Engineering pp.1524–1533
細粒分混り砂の異方応力状態における損失エネルギーと液状化強度の関係坪井稜太・石川敬祐・安田 進(東電大),原田健二,出野智之第57回地盤工学研究発表会 20-4-3-07
大型施工機による地盤改良の自動化施工伊藤竹史,廣畑憲史,今給黎健一,加藤清揮第57回地盤工学研究発表会 21-2-3-08
海底鉱物資源の揚鉱に用いるキャリア物質の粘性特性に及ぼす加圧履歴の影響(その1:B型粘度計)梅田洋彰,興井みのり・谷 和夫・野村 瞬(東京海洋大),鈴木亮彦,矢部浩史,冨田晃弘第57回地盤工学研究発表会 21-10-4-05
海底鉱物資源の揚鉱に用いるキャリア物質の粘性特性に及ぼす加圧履歴の影響(その2:変水頭フロー試験)興井みのり(東京海洋大), 梅田洋彰,谷 和夫・野村瞬(東京海洋大),鈴木亮彦,矢部浩史,冨田晃弘第57回地盤工学研究発表会 21-10-4-06
Sphere pull-up tests to assess drag force on ore model and influence of the pipe wall on drag force in riser pipeChoi Hongseok・谷 和夫・ 野村 瞬(東京海洋大),鈴木亮彦,矢部浩史,梅田洋彰第57回地盤工学研究発表会 21-10-4-08
締固め砂杭打設過程を模擬した水平地盤模型の加振実験(砂杭材料の違いが改良効果へ及ぼす影響)冨田晃弘,原田健二, 矢部浩史,古関潤一第57回地盤工学研究発表会 21-11-1-01
SCP 工法における変位緩衝孔の効果と施工後強度調査道平一史・稲川義洋(伏光組),高垣修太,田中隼矢第57回地盤工学研究発表会 21-11-1-04
既設構造物直下の揺動式複流線固化材スラリー噴射撹拌工法(矩形タイプ)適用事例林田敏彦,高田英典,日下仁志(中幸建設)第57回地盤工学研究発表会 22-8-1-03
静的締固め砂杭工法の施工に及ぼす回転の影響矢部浩史,伊藤竹史,竹内秀克,髙田英典,吉田悠都第57回地盤工学研究発表会 22-8-3-07
水中での空洞充填に適した材料の開発高田英典,鈴木亮彦,伊藤竹史,矢部浩史,永石雅大,小林一男第57回地盤工学研究発表会 22-11-3-07
地盤防災・環境保全に資する地盤改良技術の現状と展望 1.液状化対策大島昭彦(大阪市大), 川崎哲人(竹中土木),新坂孝志(三信建設工業),中西康晴(エヌ、アイ、テイ),原田健二材料 71巻, 8号 pp.719-726
石炭灰を使用したコンパクションパイル工法による取組み竹内秀克,尾形 太,中出雄也基礎工2020年8月号 pp.60-62
静的締固め砂杭工法による既存杭撤去孔の新たな埋戻し技術高田英典,竹内秀克,中村光男・沼本大輝・梶野実(長谷工),渡辺英次基礎工2022年9月号 pp.52-54
静的締固め砂杭工法の改良範囲が杭の水平抵抗に与える影響金子治(広工大),吉富宏紀2022年度日本建築学会大会学術講演会 pp.357-358
細粒分を含む砂における静止土圧係数の増加がN値と液状化抵抗比に及ぼす影響岡 有己,吉富宏紀,原田健二2022年度日本建築学会大会学術講演会 pp.359-360
静的締固め砂杭工法による既存杭撤去孔の埋戻し施工実験沼本大輝,中村光男,竹内秀克,高田英典2022年度日本建築学会大会学術講演会 pp.519-520
シルト質砂の異方応力状態における損失エネルギーと液状化強度の関係坪井稜太・石川敬祐,安田 進(東電大),原田健二,出野智之第77回土木学会全国学術講演会 III-290
静的締固め砂杭打設による実物大土層内での土圧計測矢部浩史,竹内秀克,伊藤竹史,髙田英典,吉田悠都第77回土木学会全国学術講演会 III-130
締固め砂杭工法を模擬した模型地盤における加振前後のコーン貫入試験原田健二,冨田晃弘,矢部浩史,古関潤一(東大),佐藤剛司第77回土木学会全国学術講演会 III-131
Sphere pull-up and down tests to evaluate drag forces in viscous fluids to assess ore lifting capacity崔弘錫・谷 和夫・野村 瞬(東京海洋大), 鈴木亮彦,矢部浩史, 梅田洋彰"ICPMG 2022 10th International Conference on Physical Modelling in Geotechnics pp.468-473"
Falling head flow test to study pipe flow and rheological characteristics of carrier materials used for ore lifting from deep seafloor興井みのり・谷 和夫,野村 瞬(東京海洋大),鈴木亮彦,矢部浩史, 梅田洋彰"ICPMG 2022 10th International Conference on Physical Modelling in Geotechnics pp.538-541"
せん断波速度を利用した高圧噴射攪拌工法による改良体径評価方法の検討山田 卓・大島昭彦(大阪公立大),伊藤竹史,原田健二第15回地盤改良シンポジウム pp.165-172
河川堤体における仮設鋼矢板引抜跡への砂圧入式静的締固め工法の適用事例中井寛(鉄建建設),永石雅大,高田英典,大久保直哉(鉄建建設),尾形 太第15回地盤改良シンポジウム pp.225-230
静的締固め砂杭工法による既存杭撤去孔の埋戻し工法の開発中村光男・沼本大輝(長谷工),高田英典,伊藤竹史,矢部浩史第15回地盤改良シンポジウム pp.267-270
SCP工法の改良効果のエネルギー的な視点からの考察坪井稜太・石川敬祐,安田 進(東電大),原田健二, 出野智之第15回地盤改良シンポジウム pp.499-506
締固め砂杭打設過程を模擬した水平地盤模型の振動台実験 -改良効果に及ぼす中詰め材料の影響-冨田晃弘,原田健二,矢部浩史,古関潤一(東大)第15回地盤改良シンポジウム pp.681-686
SCP工法による締固め改良地盤の微視構造変化に関するX線CT模型実験江副 哲,梅田洋彰,原田健二,佐藤宇紘,大谷 順"地盤工学ジャーナル Vol.17, No.4 pp.523-536"
少子高齢化に向けたICT地盤改良への取り組み伊藤竹史,中出雄也北海道土木技術会 土質基礎研究委員会 第21回技術報告会 pp.22-27
"小型施工機による地盤改良自動打設システム GeoPilotⓇ-AutoPile の適用範囲の拡大"吉浦彰洋建設機械施工 Vol.75 No.2 pp.64-67
SCP工法に用いる竹チップ・RC混合材料の締固め・力学特性山本航司・佐藤研一,古賀千佳嗣(福岡大),渡辺英次,布川直矢令和4年度 土木学会西部支部研究発表会 pp.369-370
改良効果の不均一性を考慮したSCP改良地盤の地震時応答解析澤田尚樹・笠間清伸,古川全太郎(九大),原田健二,竹内秀克,日髙 亮令和4年度 土木学会西部支部研究発表会 pp.379-380
水理機能とライフサイクルコストを考慮した消波工の最適な補修断面の推定西尾彰文・荒木進歩(大阪大),澁谷容子・神田泰成(東洋建設),久保田真一"土木学会論文集B2 (海岸工学) Vol.78,No.2 pp.679-684"
消波ブロックのリアルタイム据付シミュレーション手法の開発三井 順,久保田真一,橋田雅也,昇 悟志"土木学会論文集B2 (海岸工学) Vol.78,No.2 pp.685-690"
越波実験における消波ブロックのラフネスファクターへの影響要因に関する検討澤田龍輝・荒木進歩(大阪大),渡部未樹久,三井 順,久保田真一"土木学会論文集B2 (海岸工学) Vol.78,No.2 pp.697-702"
袋型根固め材による洋上風力発電設備の洗掘防止効果と模型の縮尺効果に関する大規模水理模型実験小林 航(前田工繊),関谷勇太・鈴木英樹(ナカダ産業),青田 徹,松田節男,高橋武志(港湾空港技術研究所),下迫健一郎 (沿岸技術研究センター),鈴木高二朗(港湾空港技術研究所)"土木学会論文集B2 (海岸工学) Vol.78,No.2 pp.709-714"
消波工の断面形状の変化および堤体天端高が波力低減効果に与える影響澁谷容子・神田泰成(東洋建設),西尾彰文・荒木進歩(大阪大),久保田真一,小竹康夫(東洋建設)"土木学会論文集B3 (海洋開発) Vol.78,No.2 pp.445-450"
石垣島崎枝湾におけるサンゴ礁の食物網の推定柴田早苗,伊藤 靖・當舎親典(漁港漁場漁村総合研究所),完山 暢(水産土木建設技術センター),末永慶寛(香川大)"土木学会論文集B3 (海洋開発) Vol.78,No.2 pp.679-684"
袋型根固め材による洋上風力発電設備の洗掘防止効果と敷設構造に関する水理模型実験関谷勇太・鈴木英樹(ナカダ産業),青田 徹,久保田真一,土橋和敬・小林 航(前田工繊),鈴木高二朗(港湾空港技術研究所),下迫健一郎 (沿岸技術研究センター)"土木学会論文集B3 (海洋開発) Vol.78,No.2 pp.907-912"
袋型根固め材に繁茂した植生が河川護岸に及ぼす影響萩原照通,会田俊介・風間 聡(東北大)"土木学会論文集G (環境) Vol.78,No.5 pp.135-142"
消波工嵩上げ時における消波ブロックのかみ合わせに関する定量的評価の試み久保田真一,三井 順,松本 朗"土木学会年次学術講演会 (第77回) Ⅱ-75"
長周期波対策マウンド構造物の反射率推定式の改良検討三井 順,長谷川巌(エコー),田中真史,久保田真一,松本 朗"土木学会年次学術講演会 (第77回) Ⅱ-82"
消波工不連続部の越波対策に関する平面水理実験による検討古城鉄也・瀬口 均・江川祐輔(関西エアポート),酒井大樹(東洋建設),木下勝尊"土木学会年次学術講演会 (第77回) Ⅱ-172"
防波堤背面に設置した遊水部付き長周期波対策工の越波に対する安定性山上健太郎,渡部未樹久,三井 順,久保田真一,松本 朗"土木学会年次学術講演会 (第77回) Ⅱ-173"
消波ブロックの空隙率と形状がラフネスファクターに及ぼす影響澤田龍輝・荒木進歩(大阪大),久保田真一,三井 順,渡部未樹久"2022年度土木学会関西支部年次学術講演会 ポスターⅡ-14"
消波ブロックのリアルタイム据付シミュレーション三井 順,久保田真一,橋田雅也,昇 悟志"北陸地方建設事業推進協議会 令和4年度建設技術報告会報文集 pp.25-28"
Maintenance technology of wave-dissipating works using 3D data橋田雅也,昇 悟志PIANC Yearbook 2022
An experimental study on oscillatory characteristics of young mangroves behind a portable reefS. Sreeranga・高木泰士(東工大),久保田真一,三井 順Coastal Engineering Journal
Numerical analysis about suspended sediment deposition around filter unit萩原照通,会田俊介(東北大),渡邉一也(秋田大),風間 聡(東北大)"39th IAHR World Congress pp.2590-2598"
SPH modelling of the interaction between a solitary wave and moving Tetrapods of a breakwater三井 順,C. ALTOMARE(カタルーニャ工科大),A.J.C. CRESPO・J.M. DOMÍNGUEZ(ヴィーゴ大),久保田真一,M. GÓMEZ-GESTEIRA(ヴィーゴ大),鈴木智弘(フランダース水理研究所)"39th IAHR World Congress pp.4478-4487"


Technical Research Institute
2-7 Higashi Nakanukimachi, Tsuchiura city, Ibaraki prefecture, 300-0006 Japan
  • 10 minutes by taxi from Kandatsu station on JR Joban Line.
  • 20 minutes by taxi from Tsuchiura station on JR Joban Line.